
A CIRCULANT MATRIX PROBLEM AND CERTAIN GENERIC

CYCLIC GALOIS EXTENSIONS

1. Trailer

In this note, we solve the following circulant matrix problem completely. Recall
that an integer circulant matrix M of size n× n is of the following from:

c1 cn cn−1 . . . c2
c2 c1 cn . . . c3
c3 c2 c1 . . . c4
...

...
...

. . .
...

cn cn−1 cn−2 . . . c1


Problem. Let p be a prime, let g be a primitive generator of (Z/pZ)×. Find an
integer circulant matrix M of size (p − 1) × (p − 1) such that the following two
conditions are satisfied:

(1) M


1
g
g2

...
gp−2

 =


0
0
0
...
0

 (mod p)

(2) detM = ±p

Theorem 1.1. The above problem is solvable if and only if p is among the following
primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 37, 41, 43.

Note that these primes are among the list S of primes where Q(ζp−1) has class
number one. Magenta colored primes are the ones where we can solve the circulant
matrix problem.

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71}.

This list S is also a complete list of primes p such that prime ideals above p in
Q(ζp−1) are principal (see [Sch20]).

A true mathematician will certainly question the naturality of this problem.
We will explain the connection between this problem with universal cyclic Galois
extensions over Q in the appendix of this note.

2. The solution

An integer circulant matrix of size n×n can be viewed as a member in the group
ring Z[Cn] where Cn is the cyclic group of order n. If σ is a generator of Cn, we
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may assign a cyclic permutation matrix to it

σ 7→


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

In this way, every circulant matrix M can be written as a polynomial P (σ) in σ.
This observation implies that the computation of the determinant of M is easy

detM =

p−1∏
k=1

P (ζkp−1)

= P (1) · P (−1) · · ·
(p−1)/d∏

k=1

P (ζkdp−1)︸ ︷︷ ︸
Galois orbit

· · ·
∏

(k,p−1)=1

P (ζkp−1).

Suppose want detM = ±p, then exactly one of these factors will be ±p, and the
rest must be ±1. Further more, the mod p vanishing condition on the cyclic vector
(1, g, g2, . . . , gp−2) implies the factor of p has to come from the

∏
(k,p−1)=1 P (ζ

k
p−1)

part. Thus, to solve the circulant matrix problem for p, we necessarily want p to
be the norm of an algebraic integer in Q(ζp−1).

Proposition 2.1. The circulant problem is solvable only for primes p which are
norms in Q(ζp−1), or equivalently, only for p such that prime ideals above it in
Q(ζp−1) are principal. In other words, the circulant problem is only solvable for
primes in the set S in the introduction

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71}.

Now to hunt for solutions, even for these small primes, the search space is still
too large. For circulant matrices with only 0, 1 values, there are already 2p−1

candidates to test. The idea is to do this search in a smart way which uses more
available arithmetic information.

Suppose P (x) is a degree < p−1 polynomial which solves the group ring problem
(subbing x = σ), then the algebraic integer P (ζp−1) must have norm p in the field
Q(ζp−1). Thus we should start by solving the norm problem in the field Q(ζp−1)
first, and lift back to the group ring. If R(x) is a degree < ϕ(p − 1) polynomial
such that R(ζp−1) has norm p, then any polynomial P (x) lifts R(x) in the group
ring must be of the shape

P (x) = R(x) + Φp−1(x)T (x)

(Φp−1(x) is the cyclotomic polynomial for (p− 1)-th root of unity).
Further more, not every R(x) would have a lift which satisfies the norm condition

in the group ring, we want P (x) to have norm ±1 when subbing x with ζdp−1 for
d|(p − 1) properly. Note that if ℓ is a prime which divides p − 1, the cyclotomic
polynomial will have some divisibility property (assuming ℓe is the largest ℓ-power
dividing p− 1)

Φp−1(ζ
(p−1)/ℓe

p−1 ) = 0 mod ℓ
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Thus we need the norms of R(ζ
(p−1)/ℓe

p−1 ) to be ±1 modulo these primes. These
“subfield filters” helps us to reduce the search size for R effectively.

Once R(x) is found, we search for T (x) such that P (x) = R(x) + Φp−1(x)T (x)
satisfies P (1) = ±1 and P (−1) = ±1. These conditions also reduce the search size
for T by a lot.

Algorithm 1: Finding a Circulant Matrix for Odd Integer p

Input : An odd integer p
Output: A polynomial P (x) generating the matrix

// Step 1: Find base polynomial R

1 Find a polynomial R(x) of degree < ϕ(p− 1) such that R(ζp−1) has

norm p in the field Q(ζp−1);

// Step 2: Subfield Norm Test

2 Test the norms of R(ζ
(p−1)/ℓe

p−1 ) for prime factors ℓ;

3 if the subfield norm test fails then
4 go to Step 1;

// Step 3: Sum and Alternating Sum

5 Find a polynomial T (x) of degree < p− 1− ϕ(p− 1) such that P (x)
satisfies the sum and alternating sum conditions:

P (1) = ±1 and P (−1) = ±1

// Step 4: Determinant Check

6 Check the determinant P (σ) using the product
∏p−1

k=1 P (ζ
k
p−1);

7 if this fails then
8 go to Step 3

When the problem is solvable, this algorithm usual finds the solution within a few
seconds (on 2024 commercial hardware) when we restrict our coefficients bounds to
be {-1, 0, 1} (or {−2,−1, 0, 1, 2} if necessary).

But if the above algorithm hangs up without finding any solution, then likely
there isn’t any. In that case we can show the non-existence of solutions. The idea
is, the only freedom we have in R(x) comes from the unit group of Q(ζp−1). If these
units are unable to adjust the local norms for us, then there is no hope in finding
a correct lift P (x).

In actual experimentation, for all primes p in S, if we can’t find solutions, then
following algorithm always finds obstructions.
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Algorithm 2: Computing local obstructions

// Step 1: Find fundamental units

1 In the field Q(ζp−1) find all fundamental units U1(x), U2(x), . . . , Ur(x)

(these are polynomials of degree < ϕ(p− 1));

// Step 2: Evaluate mod ℓ norms

2 Evaluate the mod ℓ norms of these fundamental units on x = ζ
(p−1)/ℓe

p−1 .

This should give us r vectors (u1,u2, . . . ,ur) in the group
∏

ℓ F
×
ℓ ;

// Step 3: Find polynomial R with norm p

3 Find one polynomial R(x) of degree < ϕ(p− 1) such that the norm of

R(ζp−1) is p;

// Step 4: Evaluate subfield norms of R

4 Evaluate the subfield norms of R(ζ
(p−1)/ℓe

p−1 ). This should give us one

vector normR in the group
∏

ℓ F
×
ℓ ;

// Step 5: Check generation condition

5 Compute if normR lies in the subgroup generated by (u1,u2, . . . ,ur);
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Appendix A. Writing down Z/pZ-extensions

(Side note: we actually know how to write down every Z/pZ extensions in gen-
eral, see [Sal84]. Here we just explore what we can do using endomorphisms on
algebraic torus.)

Suppose p is a prime where we can solve the group ring problem, let M = P (σ)
be the solution. Then we have the following exact sequence of Cp−1-modules

0 → Z[Cp−1]
P (σ)→ Z[Cp−1] → µp → 1,

where µp is the group of p-th roots of unity equipped with the natural Cp−1 action.
This sequence can be seen as a sequence of Galois module as well, given that

Gal(Q) → Cp−1 is the Galois representation arising from cyclotomic (p − 1)-th
root of unity. The data of a Galois module on the rank (p− 1) free abelian group
Z[Cp−1] is equivalent to a representation ψ : Gal(Q) → GLp−1(Z) (with image
being the cyclic group Cp−1). With this representation, we can twist the algebraic

torus Gp−1
m to the Weil torus T = Res

Q(ζp)
Q (Gm). The same thing can be done for

µp, and we get the constant group Z/pZ in return.
The key point of the above construction (turning Galois modules to groups of

multiplicative type) is that it’s an anti-equivalence. It’s just the Pontrygian duality
endowed with Galois actions. That being said, on the torus side we obtain the
following exact sequence

0 → Z/pZ → T
P (σ)→ T → 1.

The sequence above allows us to compute the Galois cohomology groupH1(Q,Z/pZ)
(since H1(Q, T ) = 0)

H1(Q,Z/pZ) ≈ Q(ζp)
×/(Q(ζp)

×)P (σ).

This effectively means that all Galois Z/pZ extensions arise from looking at the
pre-image of P (σ) on Q(ζp)

×, which is given by algebraic equations! In other words,
we can produce a family of algebraic equations, such that they classify every Galois
Z/pZ extensions.

For example, in the case when p = 3, we have the following exact sequence

(T = Res
Q(w)
Q (Gm))

0 → Z/3Z → T× σ−2→ T× → 1

Thus every Z/3Z extension arises from the solutions to the following equation
(θ2 = −3)

(x− θy)

(x+ θy)2
= u+ θv, u, v,∈ Q.

In fact for p = 3, one can do better using the norm one torus N in Q(w). In
that case, we have

0 → Z/3Z → N
3→ N → 1

Using the fact thatH1(Q, N) is a two-torsion, we obtain the classificationH1(Q,Z/3Z) =
N/N3. Furthermore, sinceN is a rational conic (defined by x2+3y2 = 1), the family
of equations we get from N can be written down using one parameter by rationally
parametrizing N . The universal cubic Galois equation we obtain from N is the
following

3x3 − 9tx2 − 3x+ t = 0, ∆ = 182(3t2 + 1)2, t ∈ Q.
Unfortunately this is a split nodal cubic, not some mysterious elliptic curve.
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