A CIRCULANT MATRIX PROBLEM AND CERTAIN GENERIC
CYCLIC GALOIS EXTENSIONS

1. TRAILER

In this note, we solve the following circulant matrix problem completely. Recall
that an integer circulant matrix M of size n x n is of the following from:

C1 Cn Cn—1 --- Co
Co C1 Cp, N C3
C3 C2 C1 . Cq
Cnh Cpn—1 Cp—2 ... C1

Problem. Let p be a prime, let g be a primitive generator of (Z/pZ)*. Find an
integer circulant matriz M of size (p — 1) x (p — 1) such that the following two
conditions are satisfied:

1 0
g 0
(1) M| 9 [=]0 (mod p)
g 0
(2) det M = +p

Theorem 1.1. The above problem is solvable if and only if p is among the following
primes:

2,3,5,7,11,13,17, 19,23, 37, 41, 43.

Note that these primes are among the list S of primes where Q((,—1) has class
number one. Magenta colored primes are the ones where we can solve the circulant
matrix problem.

S ={2,3,5,7,11,13,17,19,23,29,31,37,41, 43,61, 67, 71}

This list S is also a complete list of primes p such that prime ideals above p in
Q(¢p—1) are principal (see [Sch20]).

A true mathematician will certainly question the naturality of this problem.
We will explain the connection between this problem with universal cyclic Galois
extensions over QQ in the appendix of this note.

2. THE SOLUTION

An integer circulant matrix of size n x n can be viewed as a member in the group
ring Z[C,,] where C,, is the cyclic group of order n. If o is a generator of C,,, we
1
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may assign a cyclic permutation matrix to it

00 0 1
10 00
s |01 00
00 ... 10

In this way, every circulant matrix M can be written as a polynomial P(o) in o.
This observation implies that the computation of the determinant of M is easy

det M = pl:[ PG 1)
k=1
(p=1)/d
=pP)-P(-1)- [ PG I PG

k=1 (k,p—1)=1

Galois orbit

Suppose want det M = +p, then exactly one of these factors will be +p, and the
rest must be £1. Further more, the mod p vanishing condition on the cyclic vector
(1,9,9%,...,9°~2) implies the factor of p has to come from the [k p-1)=1 P(¢k )

part. Thus, to solve the circulant matrix problem for p, we necessarily want p to
be the norm of an algebraic integer in Q((p—1).

Proposition 2.1. The circulant problem is solvable only for primes p which are
norms in Q(Cp—1), or equivalently, only for p such that prime ideals above it in
Q(¢p—1) are principal. In other words, the circulant problem is only solvable for
primes in the set S in the introduction

S =1{2,3,5,7,11,13,17,19,23,29, 31,37, 41, 43,61, 67, T1}.

Now to hunt for solutions, even for these small primes, the search space is still
too large. For circulant matrices with only 0,1 values, there are already 2P~!
candidates to test. The idea is to do this search in a smart way which uses more
available arithmetic information.

Suppose P(z) is a degree < p—1 polynomial which solves the group ring problem
(subbing = = o), then the algebraic integer P({,—1) must have norm p in the field
Q(¢p—1). Thus we should start by solving the norm problem in the field Q({p—1)
first, and lift back to the group ring. If R(x) is a degree < ¢(p — 1) polynomial
such that R((,—1) has norm p, then any polynomial P(z) lifts R(x) in the group
ring must be of the shape

P(2) = R(z) + @1 () T(a)

(®p—_1(z) is the cyclotomic polynomial for (p — 1)-th root of unity).

Further more, not every R(x) would have a lift which satisfies the norm condition
in the group ring, we want P(x) to have norm +1 when subbing x with (I‘Ll for
d|(p — 1) properly. Note that if ¢ is a prime which divides p — 1, the cyclotomic
polynomial will have some divisibility property (assuming ¢¢ is the largest ¢-power
dividing p — 1)

®, 1 (¢P7V) =0 mod ¢
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Thus we need the norms of R(Cz(fi_ll)/ee) to be £1 modulo these primes. These
“subfield filters” helps us to reduce the search size for R effectively.

Once R(z) is found, we search for T'(z) such that P(z) = R(x) + ®,—_1(x)T(2)
satisfies P(1) = £1 and P(—1) = £1. These conditions also reduce the search size
for T by a lot.

Algorithm 1: Finding a Circulant Matrix for Odd Integer p

Input : An odd integer p
Output: A polynomial P(x) generating the matrix

// Step 1: Find base polynomial R
1 Find a polynomial R(x) of degree < ¢(p — 1) such that R((,—1) has
norm p in the field Q({p—1);
// Step 2: Subfield Norm Test

Test the norms of R((gfll)/ze) for prime factors /;

2
3 if the subfield norm test fails then
4 | goto Step 1;

// Step 3: Sum and Alternating Sum
5 Find a polynomial T'(z) of degree < p —1 — ¢(p — 1) such that P(x)
satisfies the sum and alternating sum conditions:

P(1)=41 and P(-1)==1
// Step 4: Determinant Check

6 Check the determinant P(c) using the product [[2_] P( SRR
7 if this fails then
8 L go to Step 3

When the problem is solvable, this algorithm usual finds the solution within a few
seconds (on 2024 commercial hardware) when we restrict our coefficients bounds to
be {-1, 0, 1} (or {-2,-1,0,1,2} if necessary).

But if the above algorithm hangs up without finding any solution, then likely
there isn’t any. In that case we can show the non-existence of solutions. The idea
is, the only freedom we have in R(z) comes from the unit group of Q({,—1). If these
units are unable to adjust the local norms for us, then there is no hope in finding
a correct lift P(x).

In actual experimentation, for all primes p in .S, if we can’t find solutions, then
following algorithm always finds obstructions.
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Algorithm 2: Computing local obstructions

// Step 1: Find fundamental units
1 In the field Q(¢p—1) find all fundamental units Uy (z), Uz(z), ..., Ur(z)
(these are polynomials of degree < ¢(p — 1));
// Step 2: Evaluate mod ¢ norms
2 Evaluate the mod ¢ norms of these fundamental units on x = Cz(fi _11)/ “
This should give us r vectors (uy, ug,...,u,) in the group [[,F/;

// Step 3: Find polynomial R with norm p
3 Find one polynomial R(x) of degree < ¢(p — 1) such that the norm of
R(Cp-1) is p;
// Step 4: Evaluate subfield norms of R
4 Evaluate the subfield norms of R(g;’l El)/ ze). This should give us one
vector normpg, in the group [[,F/;

// Step 5: Check generation condition
5 Compute if normpg, lies in the subgroup generated by (uy,usz,...,u;);
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APPENDIX A. WRITING DOWN Z/pZ-EXTENSIONS

(Side note: we actually know how to write down every Z/pZ extensions in gen-
eral, see [Salg4]. Here we just explore what we can do using endomorphisms on
algebraic torus.)

Suppose p is a prime where we can solve the group ring problem, let M = P(o)
be the solution. Then we have the following exact sequence of C)_;-modules

0 2[Cy1] P9 z[C,_1] = 1y — 1,
where p,, is the group of p-th roots of unity equipped with the natural C},—; action.

This sequence can be seen as a sequence of Galois module as well, given that
Gal(Q) — Cp_1 is the Galois representation arising from cyclotomic (p — 1)-th
root of unity. The data of a Galois module on the rank (p — 1) free abelian group
Z|Cp_1] is equivalent to a representation i¢: Gal(Q) — GL,_1(Z) (with image
being the cyclic group Cp,_1). With this representation, we can twist the algebraic
torus G2, to the Weil torus T = Resg(c")(Gm). The same thing can be done for
tp, and we get the constant group Z/pZ in return.

The key point of the above construction (turning Galois modules to groups of
multiplicative type) is that it’s an anti-equivalence. It’s just the Pontrygian duality
endowed with Galois actions. That being said, on the torus side we obtain the
following exact sequence

022 =T 9T 51

The sequence above allows us to compute the Galois cohomology group H'(Q, Z/pZ)
(since HY(Q,T) = 0)

HY Q. Z/pZ) = Q(Gp)* /(Q(G) ).
This effectively means that all Galois Z/pZ extensions arise from looking at the
pre-image of P(o) on Q((,)*, which is given by algebraic equations! In other words,
we can produce a family of algebraic equations, such that they classify every Galois
Z/pZ extensions.
For example, in the case when p = 3, we have the following exact sequence
(T = Resg™ (G))

0 7/37 =T ST > 1

Thus every Z/3Z extension arises from the solutions to the following equation
(6% = -3)
(z — by)
(z + 0y)?
In fact for p = 3, one can do better using the norm one torus N in Q(w). In
that case, we have

=u+0v, u,v,€Q.

0—-7Z/3Z N3N -1
Using the fact that H*(Q, N) is a two-torsion, we obtain the classification H(Q,Z/3Z) =
N/N3. Furthermore, since N is a rational conic (defined by 22+3y? = 1), the family
of equations we get from N can be written down using one parameter by rationally
parametrizing N. The universal cubic Galois equation we obtain from N is the
following
323 —Ota? —3x+t=0, A=18*3t>+1)%, tcqQ.

Unfortunately this is a split nodal cubic, not some mysterious elliptic curve.
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